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Some new vibratory machines have recently been developed using the concept of
autoresonant systems. These are electro-mechanical self-sustained vibrating systems with
phase shifting feedback. The use of this concept for vibratory machine design overcomes the
di$culties in excitation and maintaining the resonant regimes in systems with non-
linearities and variable loads. The design of autoresonant systems relies entirely on the
amplitude}phase characteristics of vibrating systems. This paper is devoted to the analysis of
these characteristics and linear vibrating systems with one and two degrees of freedom and
non-linear systems are considered. The main purpose is to investigate the main properties of
these characteristics near resonance. It is also shown that amplitude}phase curves allow
robust and reliable vibration control due to their #atness and single-valuedness.
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1. INTRODUCTION

Traditionally, independent external periodical action was used to excite oscillation of
vibratory equipment. Since most of this equipment has resonant properties, the relationship
between the excitation frequency and natural frequencies of the vibratory system
determines the regime of oscillation. The response of traditional vibratory machines with
forced excitation is largely determined by the shape of their amplitude}frequency
(resonance) curves X (u), where X is the amplitude and u is the frequency of vibration. The
following methods are used in this case to control the regime and parameters of forced
vibration.

(1) If an actuator of the synchronous type is used for forced excitation (electromagnet or
synchronous motor, for example), both amplitude F and frequency u of the exciting force
can be varied independently (Figure 1(a, b)).

(2) When a synchronous-type actuator is used for kinematic excitation (synchronous
motor, for example), both amplitude and frequency u of displacement of the point of
excitation can be varied independently.

(3) When an actuator of the asynchronous type is used for excitation (induction motor or
DC motor, for example), the drive torque}speed curve ¸ (u) can be varied to control the
amplitude and frequency of vibration (Figure 1(c)). In this "gure, N (u) is the average power
of the driver; N(u)"u¸ (u) and the resonance curve shows the dissipation power here [1].

The forced excitation (1) is often implemented through a kinematic one (2) using elastic or
viscous intermediate; the clear boundary between forced and kinematic excitation does not
exist. For many designs of exciters, frequency u can be varied only simultaneously with an
amplitude F; the type of function F(u) depends on the exciter design. The "rst two methods
0022-460X/01/490725#20 $35.00/0 ( 2001 Academic Press



Figure 1. Traditional methods of forced vibration control.

Figure 2. Jump phenomenon and Sommerfeld e!ect.
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(1) and (2) are also possible when using the asynchronous drive with unlimited
(d N/du"!R) power.

Thus, the independent or simultaneous changing of frequency, amplitude and power of
excitation is used in traditional vibrating systems to control the regime and parameters of
forced oscillation. The above methods do not directly control the phase shift between the
exciting action and the resulting vibration. This shift is the dynamic characteristic of
interaction between the driver and the system being excited.

The above methods of control of regime and parameters of forced vibration will be called
frequency control. In this case, the driver determines the frequency of vibration directly or
through its power-speed characteristic, which re#ects the frequency dependence of the
driver power.

Although the resonant regime of vibratory equipment is, in general, the most e!ective [2],
it is usually avoided because of di$culties of regime maintenance especially in systems with
a high Q-factor and varying parameters, as well as in systems with non-linearities or limited
power excitation. The jump phenomenon of the non-linear systems (Figure 2(a)) [1, 3, 4]
and the Sommerfeld e!ect in systems with limited power excitation (Figure 2(b)) [1, 3] are
the most common di$culties. The resonant curve in the last "gure represents the average
energy dissipation due to vibration.

The new approach was developed to design the resonant vibratory equipment as
a self-sustained oscillating system with electronic and electro-mechanical feedback and an



Figure 3. Self-sustained oscillating systems with feedback.

Figure 4. Elementary computer model of self-sustaining system.
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actuator of the synchronous type (Figure 3(a)). The feedback produces the exciting force
F by means of transformation and ampli"cation of the displacement (velocity, acceleration)
signal [2, 5]. A more general diagram is presented in Figure 3(b). The feedback in its
simplest form (Figure 3(c)) shifts the phase of the vibration signal from the sensor and
ampli"es its power (with limitation as a rule). This powerful signal feeds the actuator, which
transforms it to the exciting force. The elementary Matlab-Simulink computer model of
such a system is shown in Figure 4. This model uses the velocity signal in the feedback
circuit and does not need any special phase-shifting elements to get the resonant vibration.
Figure 5 illustrates this model's behaviour.

The frequency (and amplitude) of self-sustained oscillation can be controlled by means of
changing the phase shift between the exciting force and the vibrating system response. The
amplitude can be varied independently by changing the limitation level in the feedback
circuit. Phase shift and amplitude of excitation can be varied independently, when the drive
has an essential reserve of power, otherwise they cannot be varied independently. This



Figure 5. The elementary model behaviour.
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method of control of regime and parameters of self-sustained vibration will be called phase
control. This means of excitation and vibration control is devoid of drawbacks present in
the traditional frequency control of forced vibration. The progress of modern electronics has
made this control possible even for powerful machines.

The problem of forced vibration of linear and non-linear systems under external periodic
excitation with unlimited power and variable frequency and amplitude is one of the most
examined and common areas within vibration theory. The same problem in the case of
limited power of excitation is less well known, but has been widely studied [1, 3]. The shape
of the amplitude}frequency (resonance) curves determines the properties of traditional
vibratory machines with forced excitation and frequency control. The shape of these curves
has been thoroughly investigated for a wide range of vibrating systems. Ambiguity of
resonant curves of non-linear systems determines the instability of some regimes of
vibration and the jump phenomenon (Figure 2(a)).

Historically, a clock was one of the "rst self-sustaining oscillating systems. Airy [6]
investigated the in#uence of the driving instant impulse phase on the period of a pendulum
oscillation. This work was probably the "rst related to the phase control of self-sustained
oscillation. His results are known in chronometry as the Airy theorem. Other authors
(see reference [7] for example) emphasized the importance that phase shift plays in
self-sustained oscillating systems, but mostly from the point of view of oscillation
suppression [8]. The problem of phase control has assumed new signi"cance with
the expansion of power semiconductors giving new possibilities for synthesis of
electro-mechanical self-sustaining vibratory machines.

If harmonic oscillation of a single-degree-of-freedom system with phase control and
harmonic excitation is considered, it is obvious that the resonant regime takes place when
the force is in phase with vibratory velocity (or lags 3n/2 in phase from vibratory
displacement). This system is designated as an autoresonant one [2, 5]. It maintains the
resonant regime of oscillation when the natural frequency of a mechanical subsystem
changes. As the phase shift changes, the regime of oscillation (amplitude, frequency) also
changes. Amplitude}phase curves determine the system's behaviour when phase shift
changes purposely or accidentally. These curves play the same role in phase-controlled
systems as traditional resonance curves play in frequency-controlled systems. However,
amplitude}phase curves have not been studied as thoroughly as conventional
amplitude}frequency resonance characteristics. These curves for some representative
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single-degree-of-freedom systems and the simplest two-degree-of-freedom systems are
considered below. This consideration reveals some features that are essential for the design
of autoresonant vibrating machines.

2. SINGLE-DEGREE-OF-FREEDOM SYSTEM

2.1. GENERAL EXPRESSIONS

The stationary vibration of an oscillator with a single degree of freedom, linear damping
and unlimited power of harmonic excitation will "rst be considered in order to understand
the main properties of amplitude}phase curves and the behaviour of a phase-controlled
system under variable phase shift. The dimensionless equation of motion of this oscillator
can be written in the form

xA#2Dx@#x#f (x)"F (g) cos gq, (1)

where x is the dimensionless displacement, D is the dimensionless damping factor,
x@"dx/dq, q"u

0
t is the dimensionless time, u

0
is the natural frequency of oscillation

without non-linearity, g"u/u
0

is the dimensionless frequency, f (x) is the small non-linear
part of the dimensionless restoring force, and F is the amplitude of the dimensionless
exciting force. In this expression, we take into account the fact that amplitude of force
depends generally on frequency: F"F (g). At present, it makes no di!erence whether the
exciting force is external or produced by the feedback circuit.

Assuming that the resulting movement is close to the harmonic one x"X cos (gq!t),
where X is the amplitude and t is the phase shift, we can easily obtain the general
expression for amplitude}phase curves from the equation of energy balance for
non-conservative forces during a period of vibration [4]: 2nDgX2"nFX sint. This yields
the following expression:

X"

1

2D

F

g
sint"

1

2D

F [g (t)]

g (t)
sint, (2)

where g (t) is the frequency}phase function, an inverse function of the traditional phase
(phase}frequency) one. Equation (2) is the exact one for linear system ( f (x),0) and
remains valid in the framework of the approximate method of harmonic balance for systems
with non-linear restoring force ( f (x)O0). Figure 6 illustrates the shape and correlation of
the amplitude}frequency X(g), phase}frequency t (g) and amplitude}phase X(t) curves for
the simplest example of a linear system with F"const. These curves are drawn as
projections of the 3-D curve, the points of which correspond to the di!erent possible
regimes of oscillation with parameters X, g, t.

Our prime interest is to study the amplitude}phase characteristics from the standpoint of
its single-valuedness and #atness near the resonance. The single-valuedness is important
because the ambiguity causes instability of some regimes of vibration and hence di$culties
in control. Changing vibration system parameters can cause a small deviation in initial
resonant phase shift tuning, when the feedback circuit is non-ideal or the drive power is
limited. The #atness determines how di$cult it is to tune the system to the resonant regime
and to maintain this regime in circumstances when the tuning varies due to parameter
deviation.

An important general conclusion can be drawn from expression (2). It is su$cient, for
function X (t) to be single-valued, that the functions g(t) and F(g) are single-valued. In the
case of phase-controlled vibration with unlimited power of excitation, the vibration is stable



Figure 6. 3-D amplitude}phase}frequency curve and its projections.
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at all points on the amplitude}phase curve if the curve is single-valued. As this takes place,
vibration is stable at all points of the corresponding amplitude}frequency curve even if it is
ambiguous and some regimes are unstable under traditional forced excitation with
frequency control.

The usual function F(g)"gn, n"0, 1, 2 [4] are further considered:

F (g)"1, (3)

* excitation by force with constant amplitude or by reciprocal motion through a linear
spring;

F (g)"g, (4)

* excitation by reciprocal motion through a linear viscous damper;

F (g)"g2, (5)

* excitation by inertial force or rotating unbalance.

All these functions together with their linear combinations are single-valued. As this takes
place, the amplitude}phase curve X (t) is single-valued if, and only if, the frequency}phase
curve g(t) is also single-valued. It is known that the frequency}phase curve g (t) is
single-valued for a very wide range of vibrating systems. Among them are linear systems,
non-linear ones with a hardening restoring force characteristic, including vibro-impact ones
with a preliminary gap, most of the systems with a softening characteristic and many others.

Figure 7 presents the Mathlab-Simulink computer model of the oscillating system with
hardening restoring force (see section 2.3 below) and autoresonant excitation. Unlike the
model in Figure 4(a), this has a special block for shifting the phase of the square-wave signal,
and the displacement signal is used in the feedback circuit. The amplitude}phase and
amplitude}frequency curves of this model are shown in Figure 8. These curves are the result
of simulation of the real oscillation under slow changes of the phase shift (its value in the
"gure de"nes the lag between the displacement and force). As expected, all points of the



Figure 7. Computer model of non-linear system under phase control.

Figure 8. Result of simulation for non-linear system under phase control.
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above curves correspond to the stable regimes of vibration. Similar results were obtained for
the full-scale electro-mechanical model with synchronous motor [9, 10].

A case of excitation (4) is of special interest as it is the easiest way to investigate the
amplitude}phase curve shape. Equation (2) takes the form: X"(2D)~1 sin t and the curve
has the shape of sine (positive half-period). It is important to note that this shape does not
depend on the restoring force characteristic (Figure 9).

The values of frequency and phase that correspond to the maximum amplitude generally
depend on dimensionless damping. To compare the shape of di!erent curves in the vicinity



Figure 9. System with linear and non-linear spring, D"0)14, F"g.
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of the maximum, new variables are introduced: X
max

as the maximum of amplitude;
t*"arg [X

max
(t)], the value of phase shift that gives maximum amplitude. Hereinafter we

shall consider, if possible, the normalized functions s"s (u), where s"X/X
max

and
u"t/t*. This change of variables enables the maximum points to be superimposed and it
makes the comparison of shapes more representative. In the case being considered, the
normalized amplitude}phase function takes the form

s"sin
n
2

u. (6)

Unlike the previous expression, this does not depend on either the dimensionless damping
of the oscillating system or the exciter parameters. Relation (6) is very #at near the
resonance irrespective of the Q-factor.

The amplitude}phase curves will be considered in detail for the particular vibrating
systems: linear and non-linear systems with cubic non-linearity of restoring force.

2.2. LINEAR SYSTEM

In this case f (x),0. It is convenient to obtain the parametric representation of
amplitude}phase curve X (t) using the expression for phase}frequency characteristic:
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t"arctan
2Dg

1!g2
#

1

2
(sgn (g!1)#1) n,

X"

1

2D

F (g)

g
sint. (7)

Here g is the parameter. Note that from these expressions only the dimensionless damping
factor D and the type of F (g) function determine the shape of X (t) curve. The "rst of
expressions (7) gives the function t(g) asymptotic behaviour near the resonance when
DP0: t

a
(g)"1"const. The corresponding asymptotic behaviour of function X (t) is

X
a
"(2D)~1F(1) sint or s

a
"sint. This means that the asymptotic behaviour of the linear

system amplitude}phase curves does not depend on the Q-factor and the type of function
F(g).

Even if the resonant peak of the amplitude}frequency curve is extremely sharp, the
amplitude}phase curve remains #at near the resonance. Figures 9}12 show the
amplitude}phase curves s (u) for cases (3)}(5) of the excitation, respectively, and for di!erent
values of D. The traditional amplitude}frequency and phase}frequency characteristics are
also presented in these "gures. These curves are constructed using the new variable f"g/g*
instead of g, where g*"arg [X

max
(g)] is the value of frequency g that gives maximum to

amplitude X.
In the case of excitation (4), g*"1 and f"g. It is evident that amplitude}phase curves

are always #at near the resonance. The advantage of phase control over frequency control
Figure 10. Linear system, F"const:***, D"0)01; ---------, D"0)15; - ) - ) - ) - ) -, D"0)3.



Figure 11. Linear system, F"g:***, D"0)01; ---------, D"0)2; - ) - ) - ) - ) -, D"0)6.
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when exciting resonant vibration in a linear system is obvious from these "gures. As the
amplitude}phase curves are always #at in the vicinity of maximum, the precise tuning of
phase shift is not indispensable for maintaining a resonant regime. This advantage is most
e!ective when the Q-factor is large. It is in this case that the resonant regime is most
e!ective, but di$cult to maintain under frequency control.

2.3. NON-LINEAR SYSTEM WITH HARDENING RESTORING FORCE

Now consider the system with non-linearity f (x)"bx3, b'0. To investigate the general
properties of non-linear systems under phase control, approximate equations similar to
equation (7) will be used, that can be obtained by the harmonic balance method. They have
the following form [4]:

t"arctan
2Dg

g2
e
!g2

#

1

2
(sgn (g!g

e
)#1)n,

X"

1

2D

F (g)

g
sint, (8)



Figure 12. Linear system, F"g2:***, D"0)01; ---------, D"0)2; - ) - ) - ) - ) -, D"0)6.
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where g2
e
"g2

e
(X)"1#c2X2, c2"3/4b. Since g

e
depends on X, equations (8) do not give,

unlike equation (7), the parametric description of function X (t). The expression that gives
the implicit de"nition of an amplitude}frequency characteristic follows from (8):

X"

F (g)

J(g2
e
!g2)2!4D2g2

. (9)

The general regularity of the asymptotic behaviour of the considered curves near resonance
when D/bP0 can be obtained from equations (8) and (9). The asymptotic behaviour of the
amplitude}frequency curve is g

a
"cX. Consequently, the following equations determine

the asymptotic behaviour of amplitude}phase and phase}frequency curves when D/bP0:

X2

F (cX)
"

1

2Dc
sin t (10)

and

g2

F (g)
"

c
2D

sin t. (11)

As discussed above, for the case of excitation in equation (4), the shape of the
amplitude}phase curve does not depend on the type of restoring force characteristic and
equation (10) yields equation (6) (Figure 13).



Figure 13. System with hard non-linearity, F"g: ***, b"0)2, D"0)1; ---------, b"0)2, D"0)15;
- ) - ) - ) - ) -, b"0)2, D"0)25.
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In the case of equation (3), the curves s(u) remain #at (Figure 14). Furthermore, these
curves are #atter than the ones already considered: the asymptotic behaviour near

resonance when D/bP0 is described by the expression X
a
"(1/J2Dc) sin1@2 t or

s
a
"sin1@2 t. The asymptotic behaviour of the frequency}phase curve is the same:

1
a
"sin1@2 t.
The system behaviour in the case of excitation (5) depends on parameters D and b more

strongly. The feature of a system with such excitation under the model of damping considered
is that its resonance curve does not have a maximum if the ratio D/c is su$ciently small
(Figure 15). This fact results from energy consideration. Without going into detail, when the
parameter m"c2!4D2"3

4
b!4D2 is positive, the upper and lower branches of the

amplitude}frequency curve tend to in"nity asymptotically in parallel, and the distance
between branches is proportional to m1@2. If this takes place, the phase shift t cannot take all
the values from the (0, n) range. Both amplitude}phase and frequency}phase characteristics
are not de"ned on the phase shift interval including the n/2 point. The width of this interval
is 2 arctan m1@2/2D. Since the maximum amplitude is not de"ned for all values of D and b,
the curves in Figure 15 are not normalized.

From the point of phase control the last case is the least favourable, especially if m is
close to zero or positive. The advantage of phase control related to #atness of
amplitude}phase curves is not de"nite, but the main advantage related to single-valuedness
remains in force.



Figure 14. System with hard non-linearity, F"const:***, b"0)1, D"0)03; ---------, b"0)1, D"0)15;
- ) - ) - ) - ) -, b"0)1, D"0)25.
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2.4. NON-LINEAR SYSTEM WITH SOFTENING RESTORING FORCE

The system with f (x)"!bx3, b'0 is now under consideration. Equations (8) and (9)
remain unchanged provided g2

e
"g2

e
(X)"1!c2X2, c2"3

4
b. It is important in this case

to keep in mind that the restoring force becomes negative with a large displacement.
Usually this fact does not receive proper attention, but vibration is impossible with
amplitudes that result in a negative restoring force. The amplitude X* that gives zero value
to derivative d(P

max
(X))/dX will be called &&critical'', where P

max
is the maximum value of

potential energy during a period of vibration.s In the framework of the harmonic balance

method P
max

"(1!c2X2) X2/2 and (see footnote -) X*"J2/3/Jb. In this section, the
curves for all values of amplitude will be plotted but the points corresponding to the critical
one will be marked by dots. The parts of curves corresponding to stable regimes of vibration
will be shown with a bold line; the parts corresponding to unfeasible regimes with
amplitudes exceeding the critical one will be marked with a thin line. These regimes of
vibration cannot take place as the non-linear force loses restoring ability. All the curves
below are not normalized in this paragraph.

As shown above, the amplitude}phase curve has the sine shape for case (4) of excitation
irrespective of D and b (Figure 16). A special feature of this case is that an amplitude}phase
sThe value of &&critical'' amplitude deduced from the harmonic balance method is slightly below the exact value

X*"1/Jb.



Figure 15. System with hard non-linearity, F"g2: - ) - ) - ) - ) -, b"0)05, D"0)095; ***, b"0)05,
D"0)115; ------, b"0)05, D"0)15.
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curve is not de"ned on the phase interval including point n/2 when 2D/c(1. However, this

takes place only if X'2/J3b : i.e., amplitude exceeds the critical value.
In case of excitation (5) (Figure 17), the soft non-linearity makes the amplitude}phase

curve #atter in comparison with the corresponding linear system.
Excitation (3) is the most complicated. The amplitude}phase curves are two-valued

(Figure 18). In addition, the zone of non-existent phase shifts appears when D (1!D2)(c.
When the amplitude}phase curve is de"ned for the whole interval (0, n) of phase shifts, it
remains #at. The curves are always two-valued, but the upper branches correspond to
amplitudes exceeding the critical one.

All the bold branches of curves in Figures 16}18 correspond to stable regimes of
vibration under phase control, even if these regimes are unstable under frequency control.

3. TWO-DEGREE-OF-FREEDOM SYSTEM

Any speci"c system with many degrees of freedom has a wide set of
amplitude}frequency}phase curves, since di!erent points of the system may be chosen to
apply the exciting force and more than one force may be applied. Furthermore, di!erent
points may be chosen to de"ne the phase shift between the vibration and force for any
particular choice of the force application point. Moreover, even the phase shift of the
relative vibration of any two points may be of interest. There is a multiple choice to build
the phase-controlled excitation for the system with many degrees of freedom.



Figure 16. System with soft non-linearity, F"g:***, b"0)06, D"0)16; ---------, b"0)06, D"0)13;
- ) - ) - ) - ) -, b"0)06, D"0)08.

PHASE CONTROL OF SELF-SUSTAINED VIBRATION 739
The point at which vibration is used to produce the signal for auto-resonant feedback will
be called the point of observation.

To investigate the main properties of such systems under phase control, the simplest
two-degree-of-freedom linear model will be considered (Figure 19).

Its dimensionless matrix di!erential equation of motion is

MxA#2Dx@#Cx"f cos gq. (12)

Here
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The forced vibration of this system will be of the form
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Figure 17. System with soft non-linearity, F"g2:***, b"0)06, D"0)15; ---------, b"0)06, D"0)11;
- ) - ) - ) - ) -, b"0)06, D"0)07.
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Here variables describing the relative oscillation of two masses have an index of &&21''. The
example of amplitude}frequency}phase curves is shown in Figure 20(a}c) for the case
f"(1

0
), i.e., force is applied only to the "rst mass. The curves in these and subsequent "gures

are not normalized. The bold dotted and solid lines refer to masses 1 and 2, respectively; the
thin dashed line refers to the relative vibration of two masses. The following qualities can be
seen from this "gure:

* the amplitude}phase curves of the system with two degrees of freedom remain
bell-shaped and #at near the resonance;
* the amplitude}phase characteristic of mass 1 is ambiguous, unlike other

amplitude}phase curves considered above.

The "nal result means that three regimes of vibration are possible in the system with the
considered parameters under phase control for any phase shift t

1
"t

0
near the resonant

n/2 value, when the same mass m
1

is used both for excitation and observation. The
corresponding points of curves are marked with bold dots. Two regimes with high
amplitude are close to the resonant normal vibration and the third regime with the lowest
amplitude corresponds to anti-resonant vibration.

To estimate approximately the stability of these three possible regimes in the system with
the ideal feedback circuit, the energy balance will be considered. The solid curve in
Figure 20(d) represents the di!erence E

f
!E

d
between the energy supplied by the excitation



Figure 18. System with soft non-linearity, F"const:***, b"0)03, D"0)1; ---------, b"0)03, D"0)153;
- ) - ) - ) - ) -, b"0)03, D"0)16.

Figure 19. Linear model with two degrees of freedom.
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over a period of vibration E
f
"nX

1
sint

0
, provided that t

1
"t

0
"const, and the energy

dissipated by damping over the same period E
d
"2ng (jkD

1
X2

1
#D

2
X2

21
). The

dash}dotted line represents the sum of oscillating system potential and kinetic energy
E
p
#E

k
at any point in time. This point is chosen as gq"2kn, k"0, 1, 2,2; and thus

E
p
"(j2kX2

1
cos2t

1
#X2

21
cos2t

21
)/2, E

k
"(kX2

1
sin2t

1
#X2

2
sin2t

2
)/2. Both curves are

plotted against frequency. It is obvious from examination of the plots that the regime with



Figure 20. Two-degree-of-freedom system. Force is applied to mass 1: D
1
"0)05, D

2
"0)05, k"4, j"1,

....... , mass 1;==, mass 2.

Figure 21. Two-degree-of-freedom system behaviour under phase control.
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the lowest amplitude is unstable, unlike the resonant ones. Hence, two stable regimes with
di!erent amplitudes and frequencies can exist for the same phase in the considered model
under phase control, when the "rst mass is chosen to observe an oscillation and to apply
exciting force. This system under phase control demonstrates a phenomenon similar to the
jump phenomenon in non-linear systems under frequency control. Figure 21 presents the
results of a computer simulation for the model similar to the one shown in Figure 7, but now
with two degrees of freedom. Two jumps take place under slow changing phase shift. They



Figure 22. Two-degree-of-freedom system. Force is applied to mass 2: D
1
"0)05, D

2
"0)05, k"4, j"1,

....... , mass 1;==, mass 2.

Figure 23. Two-degree-of-freedom system. Force is applied to mass 1: D
1
"D

2
"0)1, j"3, k"1.
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are shown with dashed lines. The dotted parts of the curves correspond to the regimes that
cannot be obtained in this system under phase control.

The signal of the second body vibration or of the relative vibration of two bodies should
be used in the feedback circuit to avoid this ambiguity and to get a one-to-one dependence
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between the phase shift and the regime in our case. The same situation takes place when
f"(0

1
), i.e., force is applied to body 2. In this case mass 1 vibration signal should be used in

the feedback to get one-to-one dependence of the vibration regime on the phase shift. It can
be seen from Figure 22 that in this case, only one regime of oscillation corresponds to any
speci"c value of the phase shift t

2
, and this regime is stable.

Under some values of two-degree-of-freedom system parameters, all the amplitude}phase
curves can be single-valued within most of the phase shift interval, as is shown in Figure 23.
However, in order to get precise one-to-one dependence of the vibration regime on the
phase shift, an excitation point and a sensor of the vibration signal have to be positioned on
the di!erent bodies.

4. CONCLUSIONS

Phase control of the resonant vibration is robust and reliable due to the speci"c
properties of amplitude}phase characteristics. These curves are usually bell-shaped, and
this shape depends only slightly on the vibrating system and actuator parameters.

Unlike amplitude}frequency curves, amplitude}phase curves of single-degree-of-freedom
systems are single-valued and #at near the resonance for many cases of practical
importance, regardless of the Q-factor and non-linearity of the vibrating system.

The two-degree-of-freedom linear system has a set of amplitude}phase curves. All these
curves are bell-shaped and #at near resonances. At least one of these characteristics is
single-valued.

All these features determine the following advantages of the phase-controlled excitation
over the traditional frequency-controlled forced excitation of the resonant vibration in
various systems:

* resonant regimes are easy to maintain under changing system parameters;
* resonant regimes become stable even for non-linear systems.

In the case of the two-degree-of-freedom vibrating system, the feedback circuit design
demands special attention in choosing the right points of observation and excitation.

Although only the linear viscous damping was considered in the paper, it is understood
that other types of friction (pure Coulomb damping, for example) can in#uence the shape of
amplitude}phase curves. This could be the subject of a further study.
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